ICML 2014: Interesting looking papers
Rob Zinkov
2014-06-19
The following are papers that caught my eye at this year’s ICML. If there are any awesome ones I missed, let me know.
In particular, Austerity in MCMC Land is an interesting result showing one a great way to make MCMC scalable.
Efficient Continuous-Time Markov Chain Estimation
Monir Hajiaghayi, Bonnie Kirkpatrick, Liangliang Wang, Alexandre Bouchard-Côté
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions
Shiwei Lan, Bo Zhou, Babak Shahbaba
Hamiltonian Monte Carlo Without Detailed Balance
Jascha Sohl-Dickstein, Mayur Mudigonda, Michael DeWeese
Discriminative Features via Generalized Eigenvectors
Nikos Karampatziakis, Paul Mineiro
Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels
Jiyan Yang, Vikas Sindhwani, Haim Avron, Michael Mahoney
A reversible infinite HMM using normalised random measures
Konstantina Palla, David A. Knowles, Zoubin Ghahramani
Max-Margin Infinite Hidden Markov Models
Aonan Zhang, Jun Zhu, Bo Zhang
Online Bayesian Passive-Aggressive Learning
Tianlin Shi, Jun Zhu
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget
Anoop Korattikara, Yutian Chen, Max Welling